Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765416

RESUMO

Iron is an essential micronutrient for citrus, playing an important role in photosynthesis and yield. The aim of this paper was to evaluate the tolerance to Fe deficiency of five citrus rootstocks: sour orange (S), Carrizo citrange (C), Citrus macrophylla (M), Troyer citrange (T), and Volkamer lemon (V). Plants were grown for 5 weeks in nutrient solution that contained the following Fe concentrations (in µM): 0, 5, 10, 15, and 20. At the end of the experiment, biomass (dry weight-DW), leaf area, total leaf chlorophyll (CHL), and the activity of root chelate reductase (FCR) were recorded. Additionally, the mineral composition of roots (R) and shoots (S) was evaluated. Principal component analysis was used to study the relationships between all parameters and, subsequently, the relations between rootstocks. In the first component, N-S, P-S, Ca-S, Cu-S, Zn-S, Mn-S, Zn-R, and Mn-R concentrations were related to leaf CHL and FCR. Increases in leaf CHL, Mg-R, and DW (shoots and roots) were inversely related to Cu-R, which was shown in the second component. The values obtained were consistent for V10, C15, and C20, but in contrast for S0 and S5. In conclusion, micronutrient homeostasis in roots and shoots of all rootstocks were affected by Fe stress conditions. The Fe/Cu ratio was significantly related to CHL, which may be used to assist rootstock performance.

2.
Plant Physiol Biochem ; 188: 12-20, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963050

RESUMO

The large economic costs and environmental impacts of iron-chelate treatments has led to the search for alternative methods and compounds to control iron (Fe) deficiency chlorosis. Strawberry plants (Fragaria x ananassa) were grown in Hoagland's nutrient solution in a greenhouse with two levels of Fe: 0 and 10 µM Fe(III)-EDDHA. After 20 days, plants growing without Fe showed typical symptoms of Fe deficiency chlorosis in young leaves. Then, the adaxial and abaxial sides of one mature or one young leaf in each plant were brushed with 10 mM malic (MA), citric (CA) or succinic (SA) acids. Eight applications were done over a two-week period. At the end of the experiment, the newly emerged (therefore untreated), young and mature leaves were sampled for nutritional and metabolomic analysis, to assess the effectiveness of treatments. Leaf regreening was monitored using a SPAD-502 apparatus, and the activity of the ferric chelate-reductase activity (FCR) was measured using root tips. Iron deficiency negatively affected biomass and leaf chlorophyll but did not increase FCR activity. Application of succinic acid alleviated the decrease in chlorophyll observed in other treatments, and the overall nutritional balance in the plant was also changed. The concentrations of two quinic acid derivatives increased under Fe deficiency and decreased in plants treated with succinic acid, and thus they are proposed as Fe stress markers. Data suggest that foliage treatments with carboxylates may be, in some cases, environmentally friendly alternatives to Fe(III)-chelates. The importance of Fe mobilization pathways in the formulation of new fertilizers is also discussed.


Assuntos
Anemia Hipocrômica , Fragaria , Anemia Hipocrômica/metabolismo , Clorofila/metabolismo , Compostos Férricos/farmacologia , Fragaria/metabolismo , Ferro/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia
3.
Plant Physiol Biochem ; 104: 36-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27010743

RESUMO

To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 µM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 µM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe.


Assuntos
Fragaria/fisiologia , Ferro/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , FMN Redutase/metabolismo , Fragaria/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia
4.
Plant Physiol Biochem ; 53: 1-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285409

RESUMO

Bare-root transplants of strawberry (Fragaria ananassa Duch. cv. 'Selva') were transferred to nutrient solutions with or without iron (Fe). After six weeks of growth, plants grown in solution lacking Fe were chlorotic and showed morphological changes in roots typical of Fe deficiency. Subsequently, four treatments were applied for nine days: plants grown in continued absence of Fe (Fe0); plants grown in continued presence of 10 µM Fe (Fe10); foliar application of ferrous sulphate every two days to chlorotic plants (Fe-leaves); and growth of chlorotic plants in solution with ferrous sulphate (Fe-solution). After six days, the chlorophyll (Chl) content in leaves of Fe-solution plants was similar to that in Fe10 plants. Under the Fe-leaves treatment, a slight regreening of new leaves was observed only by the end of the experiment. After nine days, ferric chelate reductase (FC-R) activity was unchanged in Fe10 but increased in Fe0 plants. The FC-R activity of Fe-solution plants was similar to the initial value for chlorotic plants, whereas it was reduced drastically under the Fe-leaves treatment. The Fe concentration in leaves of Fe0 and Fe10 was similar, whereas the Fe-solution and Fe-leaves treatments enhanced leaf Fe concentration. In contrast to the Fe-solution treatment, foliar application of Fe did not increase the Fe concentration in roots. Under our experimental conditions, FC-R activity in strawberry appeared to be deactivated rapidly by pulses of Fe applied by foliar sprays. Deactivation was slower if Fe was applied directly to roots, which suggested that the plants had greater opportunity to take Fe.


Assuntos
Clorofila/deficiência , Fragaria/fisiologia , Ferro , Folhas de Planta , Raízes de Plantas , FMN Redutase/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia
5.
Tree Physiol ; 25(6): 761-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15805096

RESUMO

To determine if flower nutrient composition can be used to predict fruit quality, a field experiment was conducted over three seasons (1996-1999) in a commercial orange orchard (Citrus sinensis (L.) Osbeck cv. 'Valencia Late', budded on Troyer citrange rootstock) established on a calcareous soil in southern Portugal. Flowers were collected from 20 trees during full bloom in April and their nutrient composition determined, and fruits were harvested the following March and their quality evaluated. Patterns of covariation in flower nutrient concentrations and in fruit quality variables were evaluated by principal component analysis. Regression models relating fruit quality variables to flower nutrient composition were developed by stepwise selection procedures. The predictive power of the regression models was evaluated with an independent data set. Nutrient composition of flowers at full bloom could be used to predict the fruit quality variables fresh fruit mass and maturation index in the following year. Magnesium, Ca and Zn concentrations measured in flowers were related to fruit fresh mass estimations and N, P, Mg and Fe concentrations were related to fruit maturation index. We also established reference values for the nutrient composition of flowers based on measurements made in trees that produced large (> 76 mm in diameter) fruit.


Assuntos
Citrus sinensis/metabolismo , Solo , Cálcio/metabolismo , Citrus sinensis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Magnésio/metabolismo , Metais Pesados/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...